Gliederung – Abstrakt - Kurs 4 Digitales Aufmaß

Berufsbildung für nachhaltige Entwicklung (BBNE-Projekt)

Digitales Aufmaß		
Abstrakt, Gliederung, Aufteilung		
Entwurf		
Greencraft, BBNE-Projekt		
Thomas Hecker		
09.02.2022		

Motivation

Von der Bauplanung bis hin zur Leistungsabrechnung ist ein solides Aufmaß zwingend erforderlich. Analoge Verfahren hierfür sind bisher zeitaufwendig und vor allem im Altbau nicht immer leicht zu realisieren. Wenngleich herkömmliche Verfahren und Methoden, ein Aufmaß zu erstellen, je nach Einsatzbereich ihre Berechtigung haben, eröffnen digitale Technologien interessante Lösungswege. Digitales Aufmessen mittels Laserscanner ist eine effiziente und zukunftsweisende Alternative. Es zeigt sich bei komplexen Bauvorhaben, zum Beispiel im Sanierungsbereich, das digitale Lösungen Arbeitsschritte wesentlich vereinfachen können. Während bisher jedes Gewerk ein eigenes Aufmaß erstellte, können digitale Datensätze gemeinsam genutzt werden. Dies trägt dazu bei, genauer und effizienter zu arbeiten. Der Kurs gibt einen Überblick zu den Arbeitsschritten vom 3D-Laserscan bis hin zur Verarbeitung im CAD-Programm.

Inhalte

Zahlreiche technische Entwicklungen verändern die Praxis des Aufmessens. Teilnehmenden wird in diesem Kurs einführendes Wissen zum aktuellen Stand der Technik vermittelt. Ein Schwerpunkt des Kurses ist das Aufmessen mittels 3D Laserscan. Medienbruchfreies Erstellen und Verarbeiten von digitalen Messdaten stellen einen weiteren Schwerpunkt des Kurses dar. Nutzungsmöglichkeiten und erforderlicher Aufwand für Anschaffung, Gebrauch und Wartung werden kritisch gegenübergestellt.

Schwerpunkte

- Aufmaßmethoden im Überblick
- Funktion des 3D-Laserscanners
- Praktisches Arbeiten mit dem 3D-Laserscanner
- Vom Scan zur Punktwolke
- Betrachtung der Punktwolke im kostenlosen Viewer
- Messen und Abgleichen
- Verarbeitung im CAD-Programm
- Photogrammmetrie und Orthophoto

Ziele (Nutzen für den Teilnehmer)

Digitale Aufmaße tragen wesentlich zur Effizienzsteigerung auf Baustellen bei. Jedes Gewerk fertigte bisher eigene Aufmaße für Angebot, Materialbestellung und Leistungsabrechnung. An diese Stelle tritt das digitale Aufmaß als Arbeitsgrundlage für alle am Bau beteiligten Gewerke. Messaufwand wird deutlich reduziert.

Der besondere Nutzen von digitalen Aufmaßen liegt in der hohen Präzession der Messungen. Planunterlagen von in Nutzung befindlichen, komplexen Raumstrukturen können deutlich vereinfacht erstellt werden. Gut geeignet für alte, große oder denkmalgeschützte Gebäude.

Der Teilnehmer erfährt, welche Voraussetzungen für den professionellen Einsatz von Laserscannern erfüllt sein müssen und für wen sich die Befassung mit dieser Technik im eigenen Unternehmen wirklich lohnt.

Didaktische Hinweise, Konzept und praktische Übungen

Unterrichtseinheit	Wichtige Inhalte	Kompetenzziele	Eigenleistungsteil der Teilnehmenden
UE 1 Aufmaß und Bedeutung	Definition, Arten und Anforderungen eines Aufmaß	Teilnehmende können Aufmaß und Bedeutung erklären und analysieren	Gespräche und Wissen erweitern
UE 2 Beispielanwendungen für Aufmaß	Beispielanwendungen	Teilnehmende können verschiedene Möglichkeiten erkennen und vergleichen	Wissen erweitern und Vergleiche anstellen
UE 3 Funktion des 3D Laserscanner	Prinzip, Funktion und Anwendungsgebiete des 3D-Laserscanning	Teilnehmende verstehen Prinzip und Funktion und erkennen dessen Einsatzmöglichkeiten	Wissen erweitern und verstehen
UE 4 Nutzen, Vor und Nachteile digitales Aufmaß	Potenzial, Risiko und Ablauf eines Aufmaß im Vergleich mit konventionellen Methoden	Teilnehmende erkennen Vorteile und Planungssicherheit sowie Fehlerver- meidung und daraus resultierende Wirtschaftlichkeit.	Gespräche und Erfahrungsaustausch
UE 5 Verwendung und Bedienung Leica 3D Disto und BLK 3D	Verwendungszwecke, Möglichkeiten der Einzelnen Geräte	Teilnehmende können Möglichkeiten zum Einsatz und Nutzung der Geräte nennen und erläutern	Wissen erweitern und Vergleiche anstellen
UE 6 Praktisches Arbeiten mit dem 3D-Laserscanner BLK 360	Überblick Soft- u. Hardware; Funktions- weise des 3D-Laser- scanner; Auswahl der Standpunkte; Vor- registrierung der Standpunkte in der App	Teilnehmende verstehen Ablauf und Arbeitsweise beim Aufmaß vor Ort	Beobachten und analysieren
UE 7 Registrieren und Bereinigen von Punktwolken	Aufbau der Oberfläche Importieren der Scandaten; Standpunkte verknüpfen und optimieren; Daten bereinigen und ausrichten; Daten publizieren in verschiedene Dateiformate	Teilnehmende verstehen Bedeutung und Notwendigkeit von Registrierung und Bereinigung von Punktwolken	Wissen erweitern und verstehen
UE 8 Messen und Abgleichen im Jetviewer	Aufbau der Oberfläche Navigieren und Bewegungsabläufe Drehen, Zoomen, Messen, Clipbox	Teilnehmende können mit dem JetViewer umgehen, navigieren und messen	Messen und abgleichen am Objekt

UE 9 Punktwolke im CAD/ Sema/Vectorworks/Revit	Einlagern der Punktwolke ins CAD Höhenlage der Punkt- wolke; Geschosse im Schnitt Ändern; Erzeugen einer Treppe mithilfe der Punktwolke; Versenden eines Projektes mit	Teilnehmende erhalten Überblick von Möglichkeiten des arbeiten mit der Punktwolke im CAD	Wissen erweitern und verstehen
UE 10 Photogrammetrie und Orthophoto	Punktwolke Definition Orthophoto Und Photogrammetrie Erzeugen eines Orthofoto in Cylone Register 360 Umwandeln von Bildern in 3D Modell mithilfe von Recap Photo Messen von Entfern- ungen im 3D Modell	Teilnehmende erlangen Überblick von weitere Möglichkeiten um Maße Digital zu erfassen	Wissen erweitern und verstehen

Tabelle 1: Umsetzungsplan für Inhalte

Gliederung und zeitliche Aufteilung

Uhrzeit	Thema	Aktion	Ort	Support	Material
Tag 1					
8:00	Einführung	Begrüßung /Erwartungsnotiz Eröffnungspräsentation Fragebögen mit Anleitung ausfüllen Fragebögen einsammeln	Hörsaal	Am Platz Nein	Tassen, Fragebögen, Handouts Beamer, Rechner, Pointer
8:30	UE 1	Präsentation	Hörsaal	Nein	Beamer, Rechner Pointer
9:15		Pause	Hörsaal	Nein	Beamer, Rechner Pointer
9:30	UE 2	Präsentation	Hörsaal	Nein	Beamer, Rechner Pointer
10:15	UE 3	Präsentation	Hörsaal	Nein	Beamer, Rechner Pointer
11:00	UE 4	Präsentation	Hörsaal	Nein	Beamer, Rechner Pointer
11:45	UE 5	Präsentation	Hörsaal	Nein	Beamer, Rechner Pointer
12:30		Pause		Nein	
13:00	UE 6	Praxis	Atrium	Nein	Scanner IPad App Cyclone Field Beamer
14:00		Ende			

Tag 2					
8:00	UE 7	Präsentation	Hörsaal	Nein	Beamer,Software,Leica Register360,Rechner Pointer
9:00	Pause				
9:15	UE 8	JetViewer	Ехро	Nein	Gruppen AP Rechner,Jetstreamviewer Incl. LGS Datei
10:15	UE 9	Präsentation	Hörsaal	Nein	Beamer, Rechner Pointer CAD Software(Sema Autocad Revit Vectorworks)
11:15	UE 10	Präsentation	Hörsaal	Nein	Beamer, Rechner Pointer Software Recap Photo
11:45		Feedback	Hörsaal	Nein	Feedbackfrage-bögen
12:00		Ende			

Tabelle 2: Gliederung und Sicherstellung

Darstellung der Dozentenqualifikation

Für alle im Rahmen des Projektes "Greencraft – Grünes Handwerk Thüringen" konzipierte Module werden folgende Anforderungen an Dozierende empfohlen:

- pädagogische und fachliche Eignung
- umfassende Kenntnisse zu den Möglichkeiten und Techniken des analogen und digitalen Aufmessens sind für die Vermittlung der Kursinhalte zwingende Voraussetzung
- umfassende Kenntnisse im Umgang mit CAD Software (Cyclone Register, Sema, Autocad, Revit, Vectorworks)
- möglichst mehrjährige berufspraktische oder berufstheoretische Erfahrung
- Befähigung, Fachthemen didaktisch und methodisch für eine zielgruppenspezifische Lehre aufzubereiten
- möglichst nachgewiesene Erfahrung als Dozierender

Unabhängig von dieser Empfehlung sind bei Nutzung der Kursinhalte im Rahmen von Berufsund Weiterbildung die generell geltenden Anforderungen an die nachzuweisende Eignung der Lehrenden zu beachten.

Darstellung der Zielgruppe

Alle im Rahmen des Projektes "Greencraft – Grünes Handwerk Thüringen" konzipierten Module richten sich an das Handwerk sowie industrielle Baubranchen und relevante Branchenfelder wie Bauplanung, Bauhandel etc. Die Zielgruppe ist zweigeteilt. Zum einen handelt es sich um Jugendliche und junge Erwachsene, welche sich in einer Aus- oder Weiterbildung befinden. Die zweite Teilnehmergruppe ist das Ausbildungspersonal sowie Fachkräfte im Handwerk – Junghandwerker, Fachkräfte, Meister. Alle Kurse sind darauf ausgerichtet, an den Schnittpunkten von Ökologie, Ökonomie und Sozialem ein Bewusstsein für zukunftsfähiges Handeln im Kontext des eigenen Wirkungsumfeldes herbeiführen. Für die Kursteilnahme gibt es keine Zugangsvoraussetzungen und -beschränkungen.